(0) Obligation:

Clauses:

div(X, 0, Z) :- ','(!, fail).
div(0, Y, Z) :- ','(!, =(Z, 0)).
div(X, Y, s(Z)) :- ','(minus(X, Y, U), div(U, Y, Z)).
minus(0, Y, 0).
minus(X, 0, X).
minus(s(X), s(Y), Z) :- minus(X, Y, Z).
=(X, X).

Query: div(g,g,a)

(1) BuiltinConflictTransformerProof (EQUIVALENT transformation)

Renamed defined predicates conflicting with built-in predicates [PROLOG].

(2) Obligation:

Clauses:

div(X, 0, Z) :- ','(!, fail).
div(0, Y, Z) :- ','(!, user_defined_=(Z, 0)).
div(X, Y, s(Z)) :- ','(minus(X, Y, U), div(U, Y, Z)).
minus(0, Y, 0).
minus(X, 0, X).
minus(s(X), s(Y), Z) :- minus(X, Y, Z).
user_defined_=(X, X).

Query: div(g,g,a)

(3) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(4) Obligation:

Clauses:

minusA(0, T40, 0).
minusA(T45, 0, T45).
minusA(s(T50), s(T51), X58) :- minusA(T50, T51, X58).
divB(0, T10, 0).
divB(s(T29), s(T30), s(T22)) :- minusA(T29, T30, X32).
divB(s(T29), s(T30), s(T22)) :- ','(minusA(T29, T30, T33), divB(T33, s(T30), T22)).

Query: divB(g,g,a)

(5) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
divB_in: (b,b,f)
minusA_in: (b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

divB_in_gga(0, T10, 0) → divB_out_gga(0, T10, 0)
divB_in_gga(s(T29), s(T30), s(T22)) → U2_gga(T29, T30, T22, minusA_in_gga(T29, T30, X32))
minusA_in_gga(0, T40, 0) → minusA_out_gga(0, T40, 0)
minusA_in_gga(T45, 0, T45) → minusA_out_gga(T45, 0, T45)
minusA_in_gga(s(T50), s(T51), X58) → U1_gga(T50, T51, X58, minusA_in_gga(T50, T51, X58))
U1_gga(T50, T51, X58, minusA_out_gga(T50, T51, X58)) → minusA_out_gga(s(T50), s(T51), X58)
U2_gga(T29, T30, T22, minusA_out_gga(T29, T30, X32)) → divB_out_gga(s(T29), s(T30), s(T22))
divB_in_gga(s(T29), s(T30), s(T22)) → U3_gga(T29, T30, T22, minusA_in_gga(T29, T30, T33))
U3_gga(T29, T30, T22, minusA_out_gga(T29, T30, T33)) → U4_gga(T29, T30, T22, divB_in_gga(T33, s(T30), T22))
U4_gga(T29, T30, T22, divB_out_gga(T33, s(T30), T22)) → divB_out_gga(s(T29), s(T30), s(T22))

The argument filtering Pi contains the following mapping:
divB_in_gga(x1, x2, x3)  =  divB_in_gga(x1, x2)
0  =  0
divB_out_gga(x1, x2, x3)  =  divB_out_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(6) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

divB_in_gga(0, T10, 0) → divB_out_gga(0, T10, 0)
divB_in_gga(s(T29), s(T30), s(T22)) → U2_gga(T29, T30, T22, minusA_in_gga(T29, T30, X32))
minusA_in_gga(0, T40, 0) → minusA_out_gga(0, T40, 0)
minusA_in_gga(T45, 0, T45) → minusA_out_gga(T45, 0, T45)
minusA_in_gga(s(T50), s(T51), X58) → U1_gga(T50, T51, X58, minusA_in_gga(T50, T51, X58))
U1_gga(T50, T51, X58, minusA_out_gga(T50, T51, X58)) → minusA_out_gga(s(T50), s(T51), X58)
U2_gga(T29, T30, T22, minusA_out_gga(T29, T30, X32)) → divB_out_gga(s(T29), s(T30), s(T22))
divB_in_gga(s(T29), s(T30), s(T22)) → U3_gga(T29, T30, T22, minusA_in_gga(T29, T30, T33))
U3_gga(T29, T30, T22, minusA_out_gga(T29, T30, T33)) → U4_gga(T29, T30, T22, divB_in_gga(T33, s(T30), T22))
U4_gga(T29, T30, T22, divB_out_gga(T33, s(T30), T22)) → divB_out_gga(s(T29), s(T30), s(T22))

The argument filtering Pi contains the following mapping:
divB_in_gga(x1, x2, x3)  =  divB_in_gga(x1, x2)
0  =  0
divB_out_gga(x1, x2, x3)  =  divB_out_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)

(7) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

DIVB_IN_GGA(s(T29), s(T30), s(T22)) → U2_GGA(T29, T30, T22, minusA_in_gga(T29, T30, X32))
DIVB_IN_GGA(s(T29), s(T30), s(T22)) → MINUSA_IN_GGA(T29, T30, X32)
MINUSA_IN_GGA(s(T50), s(T51), X58) → U1_GGA(T50, T51, X58, minusA_in_gga(T50, T51, X58))
MINUSA_IN_GGA(s(T50), s(T51), X58) → MINUSA_IN_GGA(T50, T51, X58)
DIVB_IN_GGA(s(T29), s(T30), s(T22)) → U3_GGA(T29, T30, T22, minusA_in_gga(T29, T30, T33))
U3_GGA(T29, T30, T22, minusA_out_gga(T29, T30, T33)) → U4_GGA(T29, T30, T22, divB_in_gga(T33, s(T30), T22))
U3_GGA(T29, T30, T22, minusA_out_gga(T29, T30, T33)) → DIVB_IN_GGA(T33, s(T30), T22)

The TRS R consists of the following rules:

divB_in_gga(0, T10, 0) → divB_out_gga(0, T10, 0)
divB_in_gga(s(T29), s(T30), s(T22)) → U2_gga(T29, T30, T22, minusA_in_gga(T29, T30, X32))
minusA_in_gga(0, T40, 0) → minusA_out_gga(0, T40, 0)
minusA_in_gga(T45, 0, T45) → minusA_out_gga(T45, 0, T45)
minusA_in_gga(s(T50), s(T51), X58) → U1_gga(T50, T51, X58, minusA_in_gga(T50, T51, X58))
U1_gga(T50, T51, X58, minusA_out_gga(T50, T51, X58)) → minusA_out_gga(s(T50), s(T51), X58)
U2_gga(T29, T30, T22, minusA_out_gga(T29, T30, X32)) → divB_out_gga(s(T29), s(T30), s(T22))
divB_in_gga(s(T29), s(T30), s(T22)) → U3_gga(T29, T30, T22, minusA_in_gga(T29, T30, T33))
U3_gga(T29, T30, T22, minusA_out_gga(T29, T30, T33)) → U4_gga(T29, T30, T22, divB_in_gga(T33, s(T30), T22))
U4_gga(T29, T30, T22, divB_out_gga(T33, s(T30), T22)) → divB_out_gga(s(T29), s(T30), s(T22))

The argument filtering Pi contains the following mapping:
divB_in_gga(x1, x2, x3)  =  divB_in_gga(x1, x2)
0  =  0
divB_out_gga(x1, x2, x3)  =  divB_out_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
DIVB_IN_GGA(x1, x2, x3)  =  DIVB_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
MINUSA_IN_GGA(x1, x2, x3)  =  MINUSA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVB_IN_GGA(s(T29), s(T30), s(T22)) → U2_GGA(T29, T30, T22, minusA_in_gga(T29, T30, X32))
DIVB_IN_GGA(s(T29), s(T30), s(T22)) → MINUSA_IN_GGA(T29, T30, X32)
MINUSA_IN_GGA(s(T50), s(T51), X58) → U1_GGA(T50, T51, X58, minusA_in_gga(T50, T51, X58))
MINUSA_IN_GGA(s(T50), s(T51), X58) → MINUSA_IN_GGA(T50, T51, X58)
DIVB_IN_GGA(s(T29), s(T30), s(T22)) → U3_GGA(T29, T30, T22, minusA_in_gga(T29, T30, T33))
U3_GGA(T29, T30, T22, minusA_out_gga(T29, T30, T33)) → U4_GGA(T29, T30, T22, divB_in_gga(T33, s(T30), T22))
U3_GGA(T29, T30, T22, minusA_out_gga(T29, T30, T33)) → DIVB_IN_GGA(T33, s(T30), T22)

The TRS R consists of the following rules:

divB_in_gga(0, T10, 0) → divB_out_gga(0, T10, 0)
divB_in_gga(s(T29), s(T30), s(T22)) → U2_gga(T29, T30, T22, minusA_in_gga(T29, T30, X32))
minusA_in_gga(0, T40, 0) → minusA_out_gga(0, T40, 0)
minusA_in_gga(T45, 0, T45) → minusA_out_gga(T45, 0, T45)
minusA_in_gga(s(T50), s(T51), X58) → U1_gga(T50, T51, X58, minusA_in_gga(T50, T51, X58))
U1_gga(T50, T51, X58, minusA_out_gga(T50, T51, X58)) → minusA_out_gga(s(T50), s(T51), X58)
U2_gga(T29, T30, T22, minusA_out_gga(T29, T30, X32)) → divB_out_gga(s(T29), s(T30), s(T22))
divB_in_gga(s(T29), s(T30), s(T22)) → U3_gga(T29, T30, T22, minusA_in_gga(T29, T30, T33))
U3_gga(T29, T30, T22, minusA_out_gga(T29, T30, T33)) → U4_gga(T29, T30, T22, divB_in_gga(T33, s(T30), T22))
U4_gga(T29, T30, T22, divB_out_gga(T33, s(T30), T22)) → divB_out_gga(s(T29), s(T30), s(T22))

The argument filtering Pi contains the following mapping:
divB_in_gga(x1, x2, x3)  =  divB_in_gga(x1, x2)
0  =  0
divB_out_gga(x1, x2, x3)  =  divB_out_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
DIVB_IN_GGA(x1, x2, x3)  =  DIVB_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
MINUSA_IN_GGA(x1, x2, x3)  =  MINUSA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(9) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes.

(10) Complex Obligation (AND)

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSA_IN_GGA(s(T50), s(T51), X58) → MINUSA_IN_GGA(T50, T51, X58)

The TRS R consists of the following rules:

divB_in_gga(0, T10, 0) → divB_out_gga(0, T10, 0)
divB_in_gga(s(T29), s(T30), s(T22)) → U2_gga(T29, T30, T22, minusA_in_gga(T29, T30, X32))
minusA_in_gga(0, T40, 0) → minusA_out_gga(0, T40, 0)
minusA_in_gga(T45, 0, T45) → minusA_out_gga(T45, 0, T45)
minusA_in_gga(s(T50), s(T51), X58) → U1_gga(T50, T51, X58, minusA_in_gga(T50, T51, X58))
U1_gga(T50, T51, X58, minusA_out_gga(T50, T51, X58)) → minusA_out_gga(s(T50), s(T51), X58)
U2_gga(T29, T30, T22, minusA_out_gga(T29, T30, X32)) → divB_out_gga(s(T29), s(T30), s(T22))
divB_in_gga(s(T29), s(T30), s(T22)) → U3_gga(T29, T30, T22, minusA_in_gga(T29, T30, T33))
U3_gga(T29, T30, T22, minusA_out_gga(T29, T30, T33)) → U4_gga(T29, T30, T22, divB_in_gga(T33, s(T30), T22))
U4_gga(T29, T30, T22, divB_out_gga(T33, s(T30), T22)) → divB_out_gga(s(T29), s(T30), s(T22))

The argument filtering Pi contains the following mapping:
divB_in_gga(x1, x2, x3)  =  divB_in_gga(x1, x2)
0  =  0
divB_out_gga(x1, x2, x3)  =  divB_out_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
MINUSA_IN_GGA(x1, x2, x3)  =  MINUSA_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(12) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(13) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSA_IN_GGA(s(T50), s(T51), X58) → MINUSA_IN_GGA(T50, T51, X58)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
MINUSA_IN_GGA(x1, x2, x3)  =  MINUSA_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(14) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUSA_IN_GGA(s(T50), s(T51)) → MINUSA_IN_GGA(T50, T51)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(16) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MINUSA_IN_GGA(s(T50), s(T51)) → MINUSA_IN_GGA(T50, T51)
    The graph contains the following edges 1 > 1, 2 > 2

(17) YES

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVB_IN_GGA(s(T29), s(T30), s(T22)) → U3_GGA(T29, T30, T22, minusA_in_gga(T29, T30, T33))
U3_GGA(T29, T30, T22, minusA_out_gga(T29, T30, T33)) → DIVB_IN_GGA(T33, s(T30), T22)

The TRS R consists of the following rules:

divB_in_gga(0, T10, 0) → divB_out_gga(0, T10, 0)
divB_in_gga(s(T29), s(T30), s(T22)) → U2_gga(T29, T30, T22, minusA_in_gga(T29, T30, X32))
minusA_in_gga(0, T40, 0) → minusA_out_gga(0, T40, 0)
minusA_in_gga(T45, 0, T45) → minusA_out_gga(T45, 0, T45)
minusA_in_gga(s(T50), s(T51), X58) → U1_gga(T50, T51, X58, minusA_in_gga(T50, T51, X58))
U1_gga(T50, T51, X58, minusA_out_gga(T50, T51, X58)) → minusA_out_gga(s(T50), s(T51), X58)
U2_gga(T29, T30, T22, minusA_out_gga(T29, T30, X32)) → divB_out_gga(s(T29), s(T30), s(T22))
divB_in_gga(s(T29), s(T30), s(T22)) → U3_gga(T29, T30, T22, minusA_in_gga(T29, T30, T33))
U3_gga(T29, T30, T22, minusA_out_gga(T29, T30, T33)) → U4_gga(T29, T30, T22, divB_in_gga(T33, s(T30), T22))
U4_gga(T29, T30, T22, divB_out_gga(T33, s(T30), T22)) → divB_out_gga(s(T29), s(T30), s(T22))

The argument filtering Pi contains the following mapping:
divB_in_gga(x1, x2, x3)  =  divB_in_gga(x1, x2)
0  =  0
divB_out_gga(x1, x2, x3)  =  divB_out_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x1, x2, x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x1, x2, x4)
DIVB_IN_GGA(x1, x2, x3)  =  DIVB_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(19) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(20) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVB_IN_GGA(s(T29), s(T30), s(T22)) → U3_GGA(T29, T30, T22, minusA_in_gga(T29, T30, T33))
U3_GGA(T29, T30, T22, minusA_out_gga(T29, T30, T33)) → DIVB_IN_GGA(T33, s(T30), T22)

The TRS R consists of the following rules:

minusA_in_gga(0, T40, 0) → minusA_out_gga(0, T40, 0)
minusA_in_gga(T45, 0, T45) → minusA_out_gga(T45, 0, T45)
minusA_in_gga(s(T50), s(T51), X58) → U1_gga(T50, T51, X58, minusA_in_gga(T50, T51, X58))
U1_gga(T50, T51, X58, minusA_out_gga(T50, T51, X58)) → minusA_out_gga(s(T50), s(T51), X58)

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x1, x2, x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
DIVB_IN_GGA(x1, x2, x3)  =  DIVB_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(21) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIVB_IN_GGA(s(T29), s(T30)) → U3_GGA(T29, T30, minusA_in_gga(T29, T30))
U3_GGA(T29, T30, minusA_out_gga(T29, T30, T33)) → DIVB_IN_GGA(T33, s(T30))

The TRS R consists of the following rules:

minusA_in_gga(0, T40) → minusA_out_gga(0, T40, 0)
minusA_in_gga(T45, 0) → minusA_out_gga(T45, 0, T45)
minusA_in_gga(s(T50), s(T51)) → U1_gga(T50, T51, minusA_in_gga(T50, T51))
U1_gga(T50, T51, minusA_out_gga(T50, T51, X58)) → minusA_out_gga(s(T50), s(T51), X58)

The set Q consists of the following terms:

minusA_in_gga(x0, x1)
U1_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


DIVB_IN_GGA(s(T29), s(T30)) → U3_GGA(T29, T30, minusA_in_gga(T29, T30))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(DIVB_IN_GGA(x1, x2)) = x1 + x2   
POL(U1_gga(x1, x2, x3)) = 1 + x3   
POL(U3_GGA(x1, x2, x3)) = x2 + x3   
POL(minusA_in_gga(x1, x2)) = 1 + x1   
POL(minusA_out_gga(x1, x2, x3)) = 1 + x3   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

minusA_in_gga(0, T40) → minusA_out_gga(0, T40, 0)
minusA_in_gga(T45, 0) → minusA_out_gga(T45, 0, T45)
minusA_in_gga(s(T50), s(T51)) → U1_gga(T50, T51, minusA_in_gga(T50, T51))
U1_gga(T50, T51, minusA_out_gga(T50, T51, X58)) → minusA_out_gga(s(T50), s(T51), X58)

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GGA(T29, T30, minusA_out_gga(T29, T30, T33)) → DIVB_IN_GGA(T33, s(T30))

The TRS R consists of the following rules:

minusA_in_gga(0, T40) → minusA_out_gga(0, T40, 0)
minusA_in_gga(T45, 0) → minusA_out_gga(T45, 0, T45)
minusA_in_gga(s(T50), s(T51)) → U1_gga(T50, T51, minusA_in_gga(T50, T51))
U1_gga(T50, T51, minusA_out_gga(T50, T51, X58)) → minusA_out_gga(s(T50), s(T51), X58)

The set Q consists of the following terms:

minusA_in_gga(x0, x1)
U1_gga(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(25) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(26) TRUE